Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Biol Macromol ; 268(Pt 2): 131763, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38657928

RESUMO

Hsp16.3 plays a vital role in the slow growth of Mycobacterium tuberculosis via its chaperone function. Many secretory proteins, including Hsp16.3 undergo acetylation in vivo. Seven lysine (K) residues (K64, K78, K85, K114, K119, K132 and K136) in Hsp16.3 are acetylated inside pathogen. However, how lysine acetylation affects its structure, chaperone function and pathogen's growth is still elusive. We examined these aspects by executing in vitro chemical acetylation (acetic anhydride modification) and by utilizing a lysine acetylation mimic mutant (K64Q/K78Q/K85Q/K114Q/K119Q/K132Q/K136Q). Far- and near-UV CD measurements revealed that the chemically acetylated proteins(s) and acetylation mimic mutant has altered secondary and tertiary structure than unacetylated/wild-type protein. The chemical modification and acetylation mimic mutation also disrupted the oligomeric assembly, increased surface hydrophobicity and reduced stability of Hsp16.3, as revealed by GF-HPLC, 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid binding and urea denaturation experiments, respectively. These structural changes collectively led to an enhancement in chaperone function (aggregation and thermal inactivation prevention ability) of Hsp16.3. Moreover, when the H37Rv strain expressed the acetylation mimic mutant protein, its growth was slower in comparison to the strain expressing the wild-type/unacetylated Hsp16.3. Altogether, these findings indicated that lysine acetylation improves the chaperone function of Hsp16.3 which may influence pathogen's growth in host environment.

2.
Indian J Med Res ; 159(1): 91-101, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38344919

RESUMO

BACKGROUND OBJECTIVES: The clinical course of COVID-19 and its prognosis are influenced by both viral and host factors. The objectives of this study were to develop a nationwide platform to investigate the molecular epidemiology of SARS-CoV-2 (Severe acute respiratory syndrome Corona virus 2) and correlate the severity and clinical outcomes of COVID-19 with virus variants. METHODS: A nationwide, longitudinal, prospective cohort study was conducted from September 2021 to December 2022 at 14 hospitals across the country that were linked to a viral sequencing laboratory under the Indian SARS-CoV-2 Genomics Consortium. All participants (18 yr and above) who attended the hospital with a suspicion of SARS-CoV-2 infection and tested positive by the reverse transcription-PCR method were included. The participant population consisted of both hospitalized as well as outpatients. Their clinical course and outcomes were studied prospectively. Nasopharyngeal samples collected were subjected to whole genome sequencing to detect SARS-CoV-2 variants. RESULTS: Of the 4972 participants enrolled, 3397 provided samples for viral sequencing and 2723 samples were successfully sequenced. From this, the evolution of virus variants of concern including Omicron subvariants which emerged over time was observed and the same reported here. The mean age of the study participants was 41 yr and overall 49.3 per cent were female. The common symptoms were fever and cough and 32.5 per cent had comorbidities. Infection with the Delta variant evidently increased the risk of severe COVID-19 (adjusted odds ratio: 2.53, 95% confidence interval: 1.52, 4.2), while Omicron was milder independent of vaccination status. The independent risk factors for mortality were age >65 yr, presence of comorbidities and no vaccination. INTERPRETATION CONCLUSIONS: The authors believe that this is a first-of-its-kind study in the country that provides real-time data of virus evolution from a pan-India network of hospitals closely linked to the genome sequencing laboratories. The severity of COVID-19 could be correlated with virus variants with Omicron being the milder variant.


Assuntos
COVID-19 , Feminino , Humanos , Masculino , Progressão da Doença , Hospitais , Estudos Prospectivos , SARS-CoV-2/genética , Adulto , Adolescente , Idoso , Pessoa de Meia-Idade
3.
Autophagy ; 20(3): 697-698, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37953605

RESUMO

Mycobacterium tuberculosis (Mtb) employs a multifaceted arsenal to elude host defense mechanisms, including those associated with autophagy and lysosome function. Within the realm of host-pathogen interactions, NCOR1, a well-recognized transcriptional co-repressor, is known to associate with a multitude of protein complexes to effect the repression of a diverse spectrum of genes. However, its role in regulating macroautophagy/autophagy, lysosome biogenesis, and, by extension, Mtb pathogenesis remains unexplored. The depletion of NCOR1 assumes a pivotal role in the control of the AMPK-MTOR-TFEB signaling axis, thereby fine-tuning cellular ATP homeostasis. This finely orchestrated adjustment further alters the profile of proteins involved in autophagy and lysosomal biogenesis through its master regulator, TFEB, culminating in the increased Mtb survival within the host milieu. Furthermore, the treatment of NCOR1-depleted cells with either rapamycin, antimycin A, or metformin demonstrates a capacity to restore the TFEB activity and LC3-II levels, consequently restoring the capacity of host cells to clear Mtb. Additionally, exogenous NCOR1 expression rescues the AMPK-MTOR-TFEB signaling axis and essentially the autophagic induction machinery. Overall, these findings demonstrate a crucial role of NCOR1 in regulating Mtb pathogenesis within myeloid cells and sheds light toward its involvement in the development of novel host-directed therapies.


Assuntos
Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Autofagia/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Lisossomos/metabolismo
4.
PLoS Biol ; 21(8): e3002231, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37590294

RESUMO

Mycobacterium tuberculosis (Mtb) defends host-mediated killing by repressing the autophagolysosome machinery. For the first time, we report NCoR1 co-repressor as a crucial host factor, controlling Mtb growth in myeloid cells by regulating both autophagosome maturation and lysosome biogenesis. We found that the dynamic expression of NCoR1 is compromised in human peripheral blood mononuclear cells (PBMCs) during active Mtb infection, which is rescued upon prolonged anti-mycobacterial therapy. In addition, a loss of function in myeloid-specific NCoR1 considerably exacerbates the growth of M. tuberculosis in vitro in THP1 differentiated macrophages, ex vivo in bone marrow-derived macrophages (BMDMs), and in vivo in NCoR1MyeKO mice. We showed that NCoR1 depletion controls the AMPK-mTOR-TFEB signalling axis by fine-tuning cellular adenosine triphosphate (ATP) homeostasis, which in turn changes the expression of proteins involved in autophagy and lysosomal biogenesis. Moreover, we also showed that the treatment of NCoR1 depleted cells by Rapamycin, Antimycin-A, or Metformin rescued the TFEB activity and LC3 levels, resulting in enhanced Mtb clearance. Similarly, expressing NCoR1 exogenously rescued the AMPK-mTOR-TFEB signalling axis and Mtb killing. Overall, our data revealed a central role of NCoR1 in Mtb pathogenesis in myeloid cells.


Assuntos
Mycobacterium tuberculosis , Correpressor 1 de Receptor Nuclear , Animais , Humanos , Camundongos , Proteínas Quinases Ativadas por AMP , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Leucócitos Mononucleares , Células Mieloides , Serina-Treonina Quinases TOR , Correpressor 1 de Receptor Nuclear/metabolismo
5.
Microbiol Spectr ; 11(3): e0286322, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37014250

RESUMO

The peptidoglycan (PG) layer, a crucial component of the tripartite E.coli envelope, is required to maintain cellular integrity, protecting the cells from mechanical stress resulting from intracellular turgor pressure. Thus, coordinating synthesis and hydrolysis of PG during cell division (septal PG) is crucial for bacteria. The FtsEX complex directs septal PG hydrolysis through the activation of amidases; however, the mechanism and regulation of septal PG synthesis are unclear. In addition, how septal PG synthesis and hydrolysis are coordinated has remained unclear. Here, we have shown that overexpression of FtsE leads to a mid-cell bulging phenotype in E.coli, which is different from the filamentous phenotype observed during overexpression of other cell division proteins. Silencing of the common PG synthesis genes murA and murB reduced bulging, confirming that this phenotype is due to excess PG synthesis. We further demonstrated that septal PG synthesis is independent of FtsE ATPase activity and FtsX. These observations and previous results suggest that FtsEX plays a role during septal PG hydrolysis, whereas FtsE alone coordinates septal PG synthesis. Overall, our study findings support a model in which FtsE plays a role in coordinating septal PG synthesis with bacterial cell division. IMPORTANCE The peptidoglycan (PG) layer is an essential component of the E.coli envelope that is required to maintain cellular shape and integrity. Thus, coordinating PG synthesis and hydrolysis at the mid-cell (septal PG) is crucial during bacterial division. The FtsEX complex directs septal PG hydrolysis through the activation of amidases; however, its role in regulation of septal PG synthesis is unclear. Here, we demonstrate that overexpression of FtsE in E.coli leads to a mid-cell bulging phenotype due to excess PG synthesis. This phenotype was reduced upon silencing of common PG synthesis genes murA and murB. We further demonstrated that septal PG synthesis is independent of FtsE ATPase activity and FtsX. These observations suggest that the FtsEX complex plays a role during septal PG hydrolysis, whereas FtsE alone coordinates septal PG synthesis. Our study indicates that FtsE plays a role in coordinating septal PG synthesis with bacterial cell division.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Peptidoglicano/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ligação Proteica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Amidoidrolases/metabolismo , Adenosina Trifosfatases/metabolismo , Nucleotídeos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética
6.
Front Immunol ; 13: 910705, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238311

RESUMO

Dendritic cell (DC) fine-tunes inflammatory versus tolerogenic responses to protect from immune-pathology. However, the role of co-regulators in maintaining this balance is unexplored. NCoR1-mediated repression of DC immune-tolerance has been recently reported. Here we found that depletion of NCoR1 paralog SMRT (NCoR2) enhanced cDC1 activation and expression of IL-6, IL-12 and IL-23 while concomitantly decreasing IL-10 expression/secretion. Consequently, co-cultured CD4+ and CD8+ T-cells depicted enhanced Th1/Th17 frequency and cytotoxicity, respectively. Comparative genomic and transcriptomic analysis demonstrated differential regulation of IL-10 by SMRT and NCoR1. SMRT depletion represses mTOR-STAT3-IL10 signaling in cDC1 by down-regulating NR4A1. Besides, Nfkbia and Socs3 were down-regulated in Ncor2 (Smrt) depleted cDC1, supporting increased production of inflammatory cytokines. Moreover, studies in mice showed, adoptive transfer of SMRT depleted cDC1 in OVA-DTH induced footpad inflammation led to increased Th1/Th17 and reduced tumor burden after B16 melanoma injection by enhancing oncolytic CD8+ T-cell frequency, respectively. We also depicted decreased Ncor2 expression in Rheumatoid Arthritis, a Th1/Th17 disease.


Assuntos
Interleucina-10 , Interleucina-6 , Animais , Linfócitos T CD8-Positivos/metabolismo , Citocinas/metabolismo , Células Dendríticas/metabolismo , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Interleucina-23/metabolismo , Interleucina-6/metabolismo , Camundongos , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear , Fator de Transcrição STAT3 , Serina-Treonina Quinases TOR/metabolismo
7.
Front Microbiol ; 13: 942659, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016787

RESUMO

Introduction: Vaccines are available worldwide to combat coronavirus disease-19 (COVID-19). However, the long-term kinetics of the vaccine-induced antibodies against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have not been sufficiently evaluated. This study was performed to investigate the persistence and dynamicity of BBV-152 (Covaxin)- and AZD1222 (Covishield)-induced immunoglobulin-G (IgG) antibodies over the year and neutralizing antibodies' status after 1-month of booster dose. Materials and methods: This 52-week longitudinal cohort study documented antibody persistence and neutralizing antibodies status among 304 healthcare workers (HCWs) from six hospitals and research facilities in Odisha, enrolled during January 2021 and continued till March 2022. IgG antibodies against spike receptor-binding domain (RBD) of SARS-CoV-2 were quantified in an automated chemiluminescence immune assay-based (CLIA) platform and a surrogate virus neutralization test (sVNT) was performed by enzyme-linked immunosorbent assay (ELISA). Results: Among these 304 HCWs vaccinated with double doses, 154 HCWs (50.66%) were Covaxin recipients and the remaining 150 (49.34%) were Covishield recipients. During the follow-ups for seven times, a total of 114 participants were identified as vaccine breakthrough cases. In 190 non-infected HCWs, the median antibody titer was significantly waned from DD2 to DD10, both for Covaxin (231.8 vs. 42.7 AU/ml) and Covishield (1,884.6 vs. 369.2 AU/ml). No statistically significant differences in antibody titers were observed based on age, gender, comorbidities, and blood groups. The median inhibition activity of sVNT increased from 23.8 to 91.3% for Covaxin booster recipients and from 41.2 to 96.0% for Covishield booster recipients. Among 146 booster dose recipients, 48 were breakthrough cases after booster and all were contracted by the omicron variant. Conclusion: This year-long follow-up study found a 7- and 5-fold antibody waning in Covaxin and Covishield recipients, respectively, without any breakthrough infection history. However, individuals with booster breakthrough had mild symptoms and did not require hospital admission. The data also indicate the possible escape of omicron variants despite the presence of vaccine-induced neutralizing antibodies.

8.
Cell Mol Life Sci ; 79(8): 429, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35849243

RESUMO

Tight control of gene regulation in dendritic cells (DCs) is important to mount pathogen specific immune responses. Apart from transcription factor binding, dynamic regulation of enhancer activity through global transcriptional repressors like Nuclear Receptor Co-repressor 1 (NCoR1) plays a major role in fine-tuning of DC responses. However, how NCoR1 regulates enhancer activity and gene expression in individual or multiple Toll-like receptor (TLR) activation in DCs is largely unknown. In this study, we did a comprehensive epigenomic analysis of murine conventional type-I DCs (cDC1) across different TLR ligation conditions. We profiled gene expression changes along with H3K27ac active enhancers and NCoR1 binding in the TLR9, TLR3 and combined TLR9 + TLR3 activated cDC1. We observed spatio-temporal activity of TLR9 and TLR3 specific enhancers regulating signal specific target genes. Interestingly, we found that NCoR1 differentially controls the TLR9 and TLR3-specific responses. NCoR1 depletion specifically enhanced TLR9 responses as evident from increased enhancer activity as well as TLR9-specific gene expression, whereas TLR3-mediated antiviral response genes were negatively regulated. We validated that NCoR1 KD cDC1 showed significantly decreased TLR3 specific antiviral responses through decreased IRF3 activation. In addition, decreased IRF3 binding was observed at selected ISGs leading to their decreased expression upon NCoR1 depletion. Consequently, the NCoR1 depleted cDC1 showed reduced Sendai Virus (SeV) clearance and cytotoxic potential of CD8+ T cells upon TLR3 activation. NCoR1 directly controls the majority of these TLR specific enhancer activity and the gene expression. Overall, for the first time, we revealed NCoR1 mediates transcriptional control towards TLR9 as compared to TLR3 in cDC1.


Assuntos
Receptor 3 Toll-Like , Receptor Toll-Like 9 , Animais , Antivirais , Linfócitos T CD8-Positivos , Células Dendríticas/metabolismo , Epigenômica , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Camundongos , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Transdução de Sinais , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Receptores Toll-Like
9.
FASEB J ; 35(7): e21713, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34105201

RESUMO

Syrian golden hamsters (Mesocricetus auratus) infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) manifests lung pathology. In this study, efforts were made to check the infectivity of a local SARS-CoV-2 isolate in a self-limiting and non-lethal hamster model and evaluate the differential expression of lung proteins during acute infection and convalescence. The findings of this study confirm the infectivity of this isolate in vivo. Analysis of clinical parameters and tissue samples show the pathophysiological manifestation of SARS-CoV-2 infection similar to that reported earlier in COVID-19 patients and hamsters infected with other isolates. However, diffuse alveolar damage (DAD), a common histopathological feature of human COVID-19 was only occasionally noticed. The lung-associated pathological changes were very prominent on the 4th day post-infection (dpi), mostly resolved by 14 dpi. Here, we carried out the quantitative proteomic analysis of the lung tissues from SARS-CoV-2-infected hamsters on day 4 and day 14 post-infection. This resulted in the identification of 1585 proteins of which 68 proteins were significantly altered between both the infected groups. Pathway analysis revealed complement and coagulation cascade, platelet activation, ferroptosis, and focal adhesion as the top enriched pathways. In addition, we also identified altered expression of two pulmonary surfactant-associated proteins (Sftpd and Sftpb), known for their protective role in lung function. Together, these findings will aid in understanding the mechanism(s) involved in SARS-CoV-2 pathogenesis and progression of the disease.


Assuntos
COVID-19/metabolismo , COVID-19/patologia , Interações Hospedeiro-Patógeno , Pulmão/metabolismo , Pulmão/virologia , Proteômica , SARS-CoV-2/patogenicidade , Animais , COVID-19/virologia , Cricetinae , Modelos Animais de Doenças , Feminino , Pulmão/patologia , Masculino , Proteoma/análise , Proteoma/biossíntese , Reprodutibilidade dos Testes , Carga Viral
10.
Front Med (Lausanne) ; 8: 778129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004746

RESUMO

Purpose: We investigated the persistence of the vaccine-induced immunoglobulin G (IgG) antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among healthcare workers (HCWs) in Odisha who received a complete dose of either Covaxin or Covishield vaccine. Methods: This 24-week longitudinal cohort study was conducted from January to July 2021 with participants from 6 healthcare and research facilities of Odisha to understand the dynamicity of the vaccine-induced IgG antibodies against SARS-CoV-2 after the complete dose of vaccines. Results: Serum samples were collected from 614 participants during each follow-up and were tested in two chemiluminescent microparticle immunoassay (CLIA)-based platforms to detect SARS-CoV-2 antibodies both qualitatively and quantitatively. Among these participants, 308 (50.2%) participants were Covishield recipients and the rest 306 (49.8%) participants took Covaxin. A total of 81 breakthrough cases were recorded and the rest 533 HCWs without any history of postvaccination infection showed significant antibody waning either from T3 (Covaxin recipient) or T4 (Covishield recipient). The production of vaccine-induced IgG antibodies is significantly higher (p < 0.001) in Covishield compared with Covaxin. Covishield recipients produced higher median anti-S IgG titer than Covaxin. No statistically significant differences in antibody titers were observed based on age, gender, comorbidities, and blood groups. Conclusion: This 6-month follow-up study documents a 2-fold and 4-fold decrease in spike antibody titer among Covishield and Covaxin recipients, respectively. The clinical implications of antibody waning after vaccination are not well understood. It also highlights the need for further data to understand the long-term persistence of vaccine-induced antibody and threshold antibody titer required for protection against reinfection.

11.
Front Cell Infect Microbiol ; 11: 725035, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34993157

RESUMO

Purpose: The current global pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), led to the investigation with clinical, biochemical, immunological, and genomic characterization from patients to understand the pathophysiology of viral infection. Methods: Samples were collected from six asymptomatic and six symptomatic SARS-CoV-2-confirmed hospitalized patients in Bhubaneswar, Odisha, India. Clinical details, biochemical parameters, and treatment regimen were collected from a hospital; viral load was determined by RT-PCR; and the levels of cytokines and circulating antibodies in plasma were assessed by Bio-Plex and isotyping, respectively. In addition, whole-genome sequencing of viral strains and mutational analysis were carried out. Results: Analysis of the biochemical parameters highlighted the increased levels of C-reactive protein (CRP), lactate dehydrogenase (LDH), serum SGPT, serum SGOT, and ferritin in symptomatic patients. Symptomatic patients were mostly with one or more comorbidities, especially type 2 diabetes (66.6%). The virological estimation revealed that there was no significant difference in viral load of oropharyngeal (OP) samples between the two groups. On the other hand, viral load was higher in plasma and serum samples of symptomatic patients, and they develop sufficient amounts of antibodies (IgG, IgM, and IgA). The levels of seven cytokines (IL-6, IL-1α, IP-10, IL-8, IL-10, IFN-α2, IL-15) were found to be highly elevated in symptomatic patients, while three cytokines (soluble CD40L, GRO, and MDC) were remarkably higher in asymptomatic patients. The whole-genome sequence analysis revealed that the current isolates were clustered with 19B, 20A, and 20B clades; however, 11 additional changes in Orf1ab, spike, Orf3a, Orf8, and nucleocapsid proteins were acquired. The D614G mutation in spike protein is linked with higher virus replication efficiency and severe SARS-CoV-2 infection as three patients had higher viral load, and among them, two patients with this mutation passed away. Conclusions: This is the first comprehensive study of SARS-CoV-2 patients from India. This will contribute to a better understanding of the pathophysiology of SARS-CoV-2 infection and thereby advance the implementation of effective disease control strategies.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Genômica , Humanos , Pandemias , SARS-CoV-2
12.
Autoimmunity ; 54(1): 1-12, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33191792

RESUMO

BACKGROUND: Mitochondria play an important role in cell survival, function and lineage differentiation. Changes in mitochondrial DNA (mtDNA) may control mitochondrial functions and thus may impart an alternative cellular state thereby leading to a disease condition in the body. Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease wherein immune cells become self-reactive causing joint inflammation, swelling and pain in patients. The changes in mtDNA may alter cellular functions thereby directing the immune cells towards an inflammatory phenotype in RA. Therefore, it becomes pertinent to identify changes in mtDNA sequence in immune cells of RA patients to understand the pathogenesis and progression of RA. METHODS: mtDNA from peripheral blood mono-nuclear cells (PBMCs) of 23 RA patients and 17 healthy controls (HCs) were sequenced using next-generation sequencing (NGS). Further, single nucleotide polymorphisms (SNPs) and other variable changes in mtDNA hypervariable and coding regions, amino acid changes with a putative impact on disease, levels of heteroplasmy, copy number variations and haplogroup analysis in RA patients and HCs were analysed and compared to identify any association of mtDNA changes and RA disease. RESULTS: A total of 382 single nucleotide mtDNA variants were observed, 91 (23.82%) were present in hypervariable region and 291 (76.18%) in coding region of patients and HC. The variant 513 GCA > ACA, with G present in HVR-III, known to control the mitochondrial translation function, was significantly present in RA patients. The CYTB gene had larger number of SNPs in HC samples while RNR2 was more variable in RA patients. A non-synonymous heteroplasmy in ND1 gene was found at a single nucleotide position 3533 in an increased number of RA patients as compared to the controls. A significant increase in mtDNA duplication and a higher frequency of the haplogroup U was also characteristic of RA. Also, the presence of SNPs in mitochondrial tRNA genes at two positions 12308 A > G and 15924 A > G were found to be pathogenic. CONCLUSION: We herein observed an altered mtDNA sequence in immune cells of RA patients and thus a possible role of mitochondrial genome in the development of RA. The observed nucleotide changes in mtDNA control region, RNR2 gene, increased heteroplasmy and mtDNA duplication in RA patients may alter sites for transcription factor binding thereby influencing mtDNA gene expression, as well as copy numbers thereby affecting the mitochondrial proteins and their functions. These changes in mtDNA could be one of the probable reasons among many leading to the progression of RA.


Assuntos
Artrite Reumatoide/genética , Genoma Mitocondrial , Mitocôndrias/genética , Alelos , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Variações do Número de Cópias de DNA , DNA Mitocondrial , Suscetibilidade a Doenças , Estudos de Associação Genética , Genômica/métodos , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mitocôndrias/metabolismo , Polimorfismo de Nucleotídeo Único
13.
Front Genet ; 11: 3, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117432

RESUMO

A large number of genomic regions, such as transcription factor binding sites (TFBSs) captured from next generation sequencing (NGS) data analyses or those available from the public resource database ENCODE, are generally overlapped to answer a variety of biological questions. Though several command-line tools are available to perform such an analysis, there is a notable lack of an integrated webserver application with which to identify genomic region intersections, generate publication-ready plots depicting subsets of the overlapped regions, and perform functional annotation. Thus, there is an ardent need for a comprehensive and user-friendly webserver application that allows the users to either upload multiple datasets or select from the integrated Gene Transcription Regulation Database (GTRD). We thus introduce BedSect (http://imgsb.org/bedsect/.), which not only fulfils the above criteria but also performs intersection analysis along with visualization of the intersection regions as an UpSet and correlation plot using the integrated Shiny application. Moreover, analyses, including functional annotation, gene ontology, and biological pathways enrichment for the identified unique and intersected genomic regions, can also be performed using the integrated GREAT tool. To view the genomic regions in the genome browser, the inbuilt hyperlink for UCSC can redirect the user to visualize the results as custom tracks.

14.
iScience ; 19: 996-1011, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31522122

RESUMO

Understanding the mechanisms fine-tuning immunogenic versus tolerogenic balance in dendritic cells (DCs) is of high importance for therapeutic approaches. We found that NCoR1-mediated direct repression of the tolerogenic program in conventional DCs is essential for induction of an optimal immunogenic response. NCoR1 depletion upregulated a wide variety of tolerogenic genes in activated DCs, which consequently resulted in increased frequency of FoxP3+ regulatory T cells. Mechanistically, NCoR1 masks the PU.1-bound super-enhancers on major tolerogenic genes after DC activation that are subsequently bound by nuclear factor-κB. NCoR1 knockdown (KD) reduced RelA nuclear translocation and activity, whereas RelB was unaffected, providing activated DCs a tolerogenic advantage. Moreover, NCoR1DC-/- mice depicted enhanced Tregs in draining lymph nodes with increased disease burden upon bacterial and parasitic infections. Besides, adoptive transfer of activated NCoR1 KD DCs in infected animals showed a similar phenotype. Collectively, our results demonstrated NCoR1 as a promising target to control DC-mediated immune tolerance.

16.
J Biol Chem ; 292(17): 6855-6868, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28209712

RESUMO

Mycobacterium tuberculosis is known to modulate the host immune responses to facilitate its persistence inside the host cells. One of the key mechanisms includes repression of class-II transactivator (CIITA) and MHC-II expression in infected macrophages. However, the precise mechanism of CIITA and MHC-II down-regulation is not well studied. M. tuberculosis 6-kDa early secretory antigenic target (ESAT-6) is a known potent virulence and antigenic determinant. The M. tuberculosis genome encodes 23 such ESAT-6 family proteins. We herein report that M. tuberculosis and M. bovis bacillus Calmette-Guérin infection down-regulated the expression of CIITA/MHC-II by inducing hypermethylation in histone H3 lysine 9 (H3K9me2/3). Further, we showed that M. tuberculosis ESAT-6 family protein EsxL, encoded by Rv1198, is responsible for the down-regulation of CIITA/MHC-II by inducing H3K9me2/3. We further report that M. tuberculosis esxL induced the expression of nitric-oxide synthase, NO production, and p38 MAPK pathway, which in turn was responsible for the increased H3K9me2/3 in CIITA via up-regulation of euchromatic histone-lysine N-methyltransferase 2 (G9a). In contrast, inhibition of nitric-oxide synthase, p38 MAPK, and G9a abrogated H3K9me2/3, resulting in increased CIITA expression. A chromatin immunoprecipitation assay confirmed that hypermethylation at the promoter IV region of CIITA is mainly responsible for CIITA down-regulation and subsequent antigen presentation. We found that co-culture of macrophages infected with esxL-expressing M. smegmatis and mouse splenocytes led to down-regulation of IL-2, a key cytokine involved in T-cell proliferation. In summary, we demonstrate that M. tuberculosis EsxL inhibits antigen presentation by enhancing H3K9me2/3 at the CIITA promoter, thereby repressing its expression through NO and p38 MAPK activation.


Assuntos
Proteínas de Bactérias/fisiologia , Metilação de DNA , Macrófagos/metabolismo , Mycobacterium bovis/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas Nucleares/genética , Transativadores/genética , Animais , Apresentação de Antígeno , Antígenos de Bactérias/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Genoma Bacteriano , Histonas/metabolismo , Humanos , Interleucina-10/metabolismo , Interleucina-2/metabolismo , Interleucina-6/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Mutação , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Transdução de Sinais , Baço/citologia , Linfócitos T/citologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Int Immunopharmacol ; 29(2): 891-900, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26440401

RESUMO

Ruta graveolens (Rue) is a well-known medicinal plant having anti-inflammatory and other healing properties. This contains many active phytochemicals such as coumarins which possess anti-inflammatory and anti-cancer activities. The present study was carried out to evaluate the therapeutic potential of a newly isolated coumarin derivative from rue plant, 8-methoxy-chromen-2-one (MCO) in the collagen induced arthritic (CIA) rat model. MCO showed inhibition of cytokines and NF-κB in LPS stimulated J774 cells which prompted its possible use in animal. In CIA, arthritic index and arthritic score reduced markedly within 15days of MCO treatment at doses of 2mg and 20mg per kg body weight. Alleviation of joint damage in CIA animals on treatment with MCO was evident from radiographic and histological data. Behavioral studies by open field tests also showed convalescence in the MCO treated CIA rats. Further, escalated plasma levels of pro-inflammatory cytokines TNF-α, IL-1ß and IL-6, and also nitric oxide reduced significantly with the treatment. All these results indicate the therapeutic efficacy of MCO and its possible use as an anti-arthritic drug.


Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Cumarínicos/uso terapêutico , Citocinas/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Óxido Nítrico/antagonistas & inibidores , Animais , Comportamento Animal/efeitos dos fármacos , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Feminino , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Articulações/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Ratos , Ratos Wistar , Ruta/química
18.
Methods Mol Biol ; 786: 247-62, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21938631

RESUMO

Chromatin immunoprecipitation (ChIP) is a commonly used technique to detect the in vivo binding of proteins to DNA. ChIP is now routinely paired to microarray analysis (ChIP-chip) or next-generation sequencing (ChIP-Seq) to profile the DNA occupancy of proteins of interest on a genome-wide level. Because ChIP-chip introduces several biases, most notably due to the use of a fixed number of probes, ChIP-Seq has quickly become the method of choice as, depending on the sequencing depth, it is more sensitive, quantitative, and provides a greater binding site location resolution. With the ever increasing number of reads that can be generated per sequencing run, it has now become possible to analyze several samples simultaneously while maintaining sufficient sequence coverage, thus significantly reducing the cost per ChIP-Seq experiment. In this chapter, we provide a step-by-step guide on how to perform multiplexed ChIP-Seq analyses. As a proof-of-concept, we focus on the genome-wide profiling of RNA Polymerase II as measuring its DNA occupancy at different stages of any biological process can provide insights into the gene regulatory mechanisms involved. However, the protocol can also be used to perform multiplexed ChIP-Seq analyses of other DNA-binding proteins such as chromatin modifiers and transcription factors.


Assuntos
Imunoprecipitação da Cromatina/métodos , Proteínas de Ligação a DNA/genética , Processamento Eletrônico de Dados/métodos , Genoma/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Células 3T3-L1 , Animais , Camundongos
19.
Eur J Pharmacol ; 560(1): 69-80, 2007 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-17292351

RESUMO

The Ruta graveolens L. plant is used in traditional medicine to treat a large number of diseases. The methanol (50%) extract of the whole plant was observed to inhibit the expression of inducible nitric oxide synthase (iNOS) and the cycloxygenase-2 (COX-2) gene in lipopolysaccharide (LPS)-induced macrophage cells (J774A.1, [Raghav, S.K., Gupta, B., Agrawal, C., Goswami, K., Das, H.R., 2006b. Anti-inflammatory effect of Ruta graveolens L. in murine macrophage cells. J. Ethnopharmacol. 104, 234-239]). The effect of whole plant extract on the expression of other pro-inflammatory genes such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), IL-12, interferon-gamma (IFN-gamma) and the activation of nuclear factor-kB (NF-kappaB) were investigated in LPS stimulated macrophage cells. An active compound was isolated from this methanol extract by further solvent fractionation and reverse phase high performance liquid chromatography (RP-HPLC). The purified compound was identified as 3-(1'-1'-dimethyl-allyl)-6-hydroxy-7-methoxy-coumarin having IUPAC nomenclature of 6-hydroxy-7-methoxy-3-(2-methyl but-3-en-2yl)-2H-chromen-2-one by ESI-MS, MALDI, FT-IR and NMR. Effect of this purified compound was assessed on iNOS, COX-2 and various pro-inflammatory cytokine genes and was observed to inhibit both the protein and mRNA expression of iNOS and IL-1beta in LPS challenged macrophages. Electrophoretic mobility shift assay (EMSA) and Western blot analyses indicated that the plant extract and the isolated active compound blocked the LPS-induced activation of NF-kappaB through the prevention of inhibitor-kB (IkB) degradation. The purified compound also showed the anti-oxidant activity. The active compound at a dose of 40 mg/kg body weight was observed to inhibit the iNOS and IL-1beta gene expression significantly in endotoxin-induced inflammatory model of BALB/c mice. The low level of nitric oxide production was also observed in the sera of compound treated mice. The normal behavioral condition in LPS challenged BALB/c mice was noticed when these were treated with active compound.


Assuntos
Anti-Inflamatórios/farmacologia , Interleucina-1beta/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Extratos Vegetais/farmacologia , Ruta , Animais , Western Blotting , Cromatografia Líquida de Alta Pressão , Cumarínicos , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Modelos Animais de Doenças , Ensaio de Desvio de Mobilidade Eletroforética , Expressão Gênica/efeitos dos fármacos , Proteínas I-kappa B , Interleucina-1beta/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Óxido Nítrico/biossíntese , Fitoterapia
20.
Mediators Inflamm ; 2006(3): 12682, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16951485

RESUMO

We examined the role of tumor necrosis factor (TNF-alpha) and its related signaling intermediates leading to apoptosis/proliferation in the peripheral blood mononuclear cells (PBMCs) of RA patients. The constitutive expression of mRNA for TNF-alpha receptors (TNFR-I and TNFR-II) and the adapter molecules, such as the TNF receptor-associated death domain protein (TRADD), Fas-associated death domain protein (FADD), receptor interacting protein (RIP), and TNF receptor-associated factor 2 (TRAF-2) were analyzed by reverse transcriptase-PCR (RT-PCR) in PBMCs from control and RA cases. PBMCs of RA patients showed a significant increase in TNF-alpha and TNFR-I expression as compared with that from control subjects along with significantly increased constitutive expression of TRADD, RIP, and TRAF-2 mRNA. There was a decrease in expression of FADD in RA patients, but the difference was not significant as compared to controls. These data suggested enhanced signaling by the TNFR-I-TRADD-RIP-TRAF-2 pathway and suppressed signaling by the TNFR-I-TRADD-FADD pathway in PBMCs of RA patients. However, the regulatory mechanisms for TNF-alpha induced signaling may not be explained only by these pathways.


Assuntos
Artrite Reumatoide/imunologia , Leucócitos Mononucleares/metabolismo , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteína de Domínio de Morte Associada a Fas , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/fisiologia , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/fisiologia , Fator 2 Associado a Receptor de TNF/genética , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/fisiologia , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA